Abstract

The efficient energy conversion of fuel cells is greatly constrained by the slow oxygen reduction reaction (ORR) kinetics, which necessitates the use of highly active metal catalysts such as platinum (Pt). The critical challenge limiting large-scale usage of Pt is the capital cost that can be addressed through a prototypical approach by embedding metal nanoparticles (NPs), e.g., Pt NPs, in the conductive framework. However, previously reported embedding approaches are sophisticated and suffer from limited yields, leading to higher chemical process costs and remaining distant from commercial viability. Here, we report a facile, cost-effective and time-efficient structural tuning approach to synthesizing ultrafine Pt NPs impregnated within a conductive and highly porous carbon framework via a microwave-assisted polyol reduction method. Pt NPs with a uniform size of ∼2.27 nm can be successfully integrated within the pores of the carbon framework, enabling homogeneous dispersion. Benefiting from these highly dispersed and ultrafine Pt NPs, the electrochemical surface area (ECSA) is improved to 142.98 m²/gPt, 2.25 times higher than that of the commercial counterpart (63.52 m²/gPt). Furthermore, our structurally optimized catalyst composite features a remarkably catalytic activity with a high half-wave potential (E1/2) of 0.895 V and an improved mass activity (MA) of 0.2289 A/mgPt, 2.39-fold improvement compared to the commercial counterpart. In addition, orthogonal experiments were designed to identify the key process parameters for fabricating Pt/C catalysts, offering insights for scaled-up and industrial production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call