Abstract

Zinc oxide based metal oxide varistors (MOV) are widely used electrical surge protection components. The design of modern high power, high-density electronic systems necessitate the need for smaller footprint, higher current density and higher nonlinearity MOVs. Such requirements can no longer be satisfied by commercially available MOVs due to their limited voltage capability, high leakage current and mechanical cracking related reliability issues, most of which are associated with the presence of defects and coarse granularity and lack of uniformity in their microstructures. New formulations and processes have been developed to overcome such limitations. This work has developed nano-enabled MOV compositions that can be sintered at relatively lower temperatures than typical commercial MOVs, but with largely improved I-V characteristics due to refined and uniform sub-micron structures. These nano-enabled MOVs show not only high breakdown strength (1.5 kV/mm) with low leakage current, but also a large nonlinear alpha coefficient > 50 at high fields, a measure of the speed of the transition from the insulating to conducting state and the effectiveness of over-voltage protection. A > 10x increase in breakdown strength compared to commercial MOVs, along with much higher nonlinearity, will enable MOV miniaturization, high voltage surge protection, and open up new areas of application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.