Abstract

The surface morphology evolution of polypropylene (PP) irradiated with an Ar ion beam was explored using a hybrid ion beam system. PP formed the emboss-like nanostructure of ∼ 50 nm induced by the Ar ion beam treatment for shorter ion beam treatment times, while the emboss-like structure was transited into a 3-D long nanofiber-like nanostructure for longer treatment times. The Fourier transform infrared spectra revealed that the polymer chain cross-linking increased with increasing ion treatment time, while the Raman analysis showed that the conducting amorphous carbon increased on the surface of PP. The surface hardness and plane strain modulus of the PP decreased from 0.11 to 0.07 GPa and from 1.75 to 1.26 GPa, respectively, with respect to the Ar ion beam treatment time due to the surface nanostructures formed by the Ar ion beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.