Abstract

Gas-phase electrophoresis of single-charged analytes (nanoparticles) enables their separation according to the surface-dry particle size (Electrophoretic Mobility Diameter, EMD), which corresponds to the diameter of spherical shaped particles. Employing a nano Electrospray Differential Mobility Analyzer (nES DMA), also known as nES Gas-phase Electrophoretic Mobility Molecular Analyzer (nES GEMMA), allows sizing/size-separation and determination of particle-number concentrations. Separations are based on a constant high laminar sheath flow and a tunable, orthogonal electric field enabling scanning of EMDs in the nanometer size range. Additionally, keeping the voltage constant, only nanoparticles of a given EMD pass the instrument and can be collected on corresponding supporting materials for subsequent nanoparticle analyses applying e.g. microscopic, immunologic or spectroscopic techniques. In our proof-of-concept study we now focus for the first time on mass spectrometric (MS) characterization of DMA size-selected material. We carried out size-selection of liposomes, vesicles consisting of a lipid bilayer and an aqueous lumen employed as carriers in e.g. pharmaceutic, cosmetic or nutritional applications. Particles of 85 nm EMD were collected on gold-coated silicon wafers. Subsequently, matrix was applied and Matrix-Assisted Laser Desorption / Ionization (MALDI) MS carried out. However, we not only focused on plain liposomes but also demonstrated the applicability of our approach for very heterogeneous low density lipoprotein (VLDL) particles, a transporter of lipid metabolism. Our novel offline hyphenation of gas-phase electrophoresis (termed nES DMA or nES GEMMA) and MALDI-MS opens the avenue to the molecular characterization of size-select nanoparticles of complex nature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call