Abstract

Magnesium (Mg) alloys are good candidates for applications with requirement of energy saving, taking advantage of their low density. However, the fewer slip systems of the hexagonal‐close‐packed (hcp) structure restrict ductility of Mg alloys. Here, a hybrid nanostructure concept is presented by combining nano‐dual‐phase metallic glass (NDP‐MG) and gradient nanograin structure in Mg alloys to achieve a higher yield strength (230 MPa, 31% improvement compared with the reference base alloy) and larger ductility (20%, threefold higher than the SMAT‐H sample), which breaks the strength–ductility trade‐off dilemma. This hybrid nanostructure is realized by surface mechanical attrition treatment (SMAT) on the surface of a crystalline Mg alloy, and followed by physical vapor deposition of a Mg‐based NDP‐MG. The higher strength is provided by the nanograin layer generated by SMAT. The larger ductility is a synergistic effect of multiple shear bandings and nanocrystallization of the NDP‐MG, inhibition of crack propagation from the SMATed nanograined structure by the NDP‐MG, and strain‐induced grain growth in the SMATed nanograin layer. This hybrid nanostructure design provides a general route to render brittle alloys stronger and ductile, especially in hcp systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call