Abstract

The glass-forming ability and devitrification behavior of a Zr55Cu35Al10 bulk glass-forming alloy were examined to elucidate the very high nanocrystallization product density (>1023m−3). The crystallization kinetics and structural changes in the glassy alloy were studied using X-ray diffraction, transmission electron microscopy, differential scanning and isothermal calorimetry methods. The observed sequential phase formation during isothermal reaction and the high nanocrystal density are consistent with the influence of residual oxygen even at low levels (<500ppm) to promote nucleation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.