Abstract

As the size of MicroLED chips shrinks below 50 μm, the emergence of quantum dots (QDs)-based color conversion with narrow-band emission and nanoscale size properties has become one of the powerful full-color solutions for MicroLED displays. However, the stability and toxicity of quantum dots limit their application in full-color MicroLEDs. The phosphor-based conversion has the prominent features of high thermal and chemical stability relative to those of QD-based conversion. Nevertheless, the particle size of phosphor prepared by a traditional high-temperature solid-state reaction (SSR) is equivalent to or even larger than that of the MicroLED chip. In this work, we propose a strategy to prepare (Sr,Ba)2SiO4:0.03Eu2+ (SBSO:0.03Eu2+) submicron phosphors via a nano-coprecipitation method (NCP) using nanoSi3N4 as the Si source materials, which enables the particle size to be reduced while maintaining the luminescence efficiency. The optimized SBSO:0.03Eu2+ has an average size of less than 2 μm, showing a narrow band green emission centered at 522 nm, with a full width at half-maximum of 60 nm and an external quantum efficiency of 40.2%. At 150 °C, its thermal stability is greatly enhanced to 80.2% of the emission at room temperature. Further, the mechanism for defect compensation thermal stability is investigated. By employing it as a green emitter, we fabricate a high-performance white LED device (WLED) with a wide color gamut of 86.7% NTSC. This work for the preparation of high-brightness and thermal stability enhancement SBSO:0.03Eu2+ phosphor not only provides a facile method but also helps to provide an alternative green fluorescent material for the realization of full color MicroLED.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call