Abstract

Thermal-fluid transport in the pipeline is an essential process in the application of chemical industry, biology and microfluidic chip. Conventional fluid transport in the pipeline generates much energy loss by hysteresis and heat transfer at the solid/liquid interface, which has become the most significant issue for the applications of novel energy-efficient equipments. Here, we demonstrate a flexible superhydrophobic pipeline with fluid-resistance reduction and thermal isolation properties. Liquid metal as buffer material enhances the bonding strength between flexible pipeline and nano-structures, providing much more pocketed air between solid/liquid interface, which enhances the water repellency of inwall surface and declines the interfacial heat transfer efficiency. These research highlights the potential applications of superhydrophobic functional materials in the field of energy conservation and environment protection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call