Abstract

Pure PVA and composite thin films of poly vinyl alcohol (PVA)/Titanium dioxide (TiO2) were prepared on pre-cleaned glass substrates by Dip Coating Technique (DCT) and Metal Organic Deposition Technique (MODT). EDS and FTIR spectrum were used to identify the composition of the prepared films. The vibrational peaks observed at 1260 cm-1 and 851 cm-1 are assigned to C–C stretching and CH rocking of PVA. The characteristic band appearing at 1432 cm-1 is assigned to C–H bend of CH2 of PVA. The bands observed around 847 cm-1 and 601cm-1 belong to the asymmetric stretching of Ti–O–Ti groups. The last band at 460 cm-1 is due to the bending mode of Ti–O–Ti. The bands covered by Ti-O were located at 540, 700 and 950 cm-1. From the FTIR spectra, it is observed that some of the peaks of composite films were shifted and some of them were disappeared with respect to the pure compounds. This results manifested the conclusion about the specific interactions in composite polymer matrices and hence the complexation. Thus, complex formation in the composite polymer matrices has been confirmed from this analysis. The thickness of the coated films were measured by using an electronic thickness measuring instrument (Tesatronic-TTD-20), gravimetric method and cross checked by optical spectrophotometer. XRD spectra indicated the amorphous nature of the films. Surface morphology of the coated films was studied by scanning electron microscope (SEM). The surface revealed no pits and pin holes on the surface. Both as grown and annealed films showed predominantly amorphous nature. The observed surface morphology and thermal stability indicated that these films could be used as dielectric layer in organic thin film transistors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.