Abstract

Nano-composite olivine LiMnPO4 (nC-LMP) was found to exhibit facile pseudo-capacitive characteristics in aqueous as well as non-aqueous electrolytes. We demonstrated employing nC-LMP as positive electrode in hybrid electrochemical capacitors namely Li-Ion hybrid capacitors (LIC). Adapting a simple CVD technique, nano-crystallites of LiMnPO4 were coated with carbon monolayers of ∼2 nm thick to circumvent its poor intrinsic electronic conductivity. The novelty is that the single crystallites were intimately covered with carbon ring and networked to the neighboring crystallites via the continuous carbon wire-like connectivity as revealed from HRTEM analysis. Single electrode faradic capacitance of 3025 Fg−1 (versus standard calomel reference electrode) was deduced for carbon coated LMP, the highest reported hitherto in Li+ aqueous electrolytes. Employing nC-LMP as working electrode versus an activated carbon (AC), we obtained a high specific energy of 28.8 Wh kg−1 with appreciable stability in aqueous electrolytes whereas in nonaqueous electrolyte there is an obvious increase in energy density (35 Wh kg−1) due to wider potential window. That is, a full cell version of LIC, AC|Li+|LMP, was fabricated and demonstrated its facile cycling characteristics via removal/insertion of Li+ within nC-LMP (positive electrode) and the electrosorption of Li+ into mesoporous carbon (AC) (negative electrode). Such cells ensured a typical battery-like charging and EDLC-like discharging characteristics of LIC type electrochemical capacitors (ECs) which are desired to enhance safety and energy densities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.