Abstract

At the micro and nano scale the standard no slip boundary condition of classical fluid mechanics does not apply and must be replaced by a boundary condition that allows some degree of tangential slip. In this study the classical laminar boundary layer equations are studied using Lie symmetries with the no-slip boundary condition replaced by a nonlinear Navier boundary condition. This boundary condition contains an arbitrary index parameter, denoted by n > 0 , which appears in the coefficients of the ordinary differential equation to be solved. The case of a boundary layer formed in a convergent channel with a sink, which corresponds to n = 1 / 2 , is solved analytically. Another analytical but non-unique solution is found corresponding to the value n = 1 / 3 , while other values of n for n > 1 / 2 correspond to the boundary layer formed in the flow past a wedge and are solved numerically. It is found that for fixed slip length the velocity components are reduced in magnitude as n increases, while for fixed n the velocity components are increased in magnitude as the slip length is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.