Abstract
Graphene and its derivatives have garnered significant scientific interest and have potential use in nano-electronics as well as biomedicine. However the undesirable biological consequence, especially upon inhalation of the particle, requires further investigations. This study aimed to elucidate the nano-biointeractions of PEGylated reduced graphene oxide (PrGO) and reduced graphene oxide (rGO) with that of lung alveolar epithelial cells (A549). Both nanomaterials showed dose dependent decrease in cell viability and alteration of cell morphology after 24h. Upon intracellular uptake of PrGO, it elicited oxidative stress mediated apoptosis in the cells by inducing ROS, loss of mitochondrial membrane potential (MMP) and inflammatory response by NF-κB activation. Conversely, rGO was found to scavenge ROS efficiently except at high dose after 24h. It was found that ROS at high dose of rGO prompted loss of MMP. rGO was found to adhere to the cell membrane, where it is assumed to bind to cell surface Toll like receptors (TLRs) thereby activating NF-κB mediated inflammatory response. All these events culminated in an increase in apoptosis of A549 cells after 24h of rGO exposure. It was also noticed that both the nanomaterials did not initiate lysosomal pathway but instead activated mitochondria mediated apoptosis. This study highlights the possible adverse toxic effect of PrGO and rGO upon inhalation and persistence of these particles in the lungs. Further research is required to comprehend the biological response of PrGO and rGO so as to advance its biomedical application and safety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.