Abstract

Biofilm is a spatially organized community formed by the accumulation of both microorganisms and their secretions, leading to persistent and chronic infections because of high resistance toward conventional antibiotics. In view of the tunable physicochemical properties and the related unique biological behavior (e.g., size-, shape-, and surface charge-dependent penetration, protein corona endowed targeting, catalytic- and electronic-related oxidative stress, optical- and magnetic-associated hyperthermia, etc.), nanomaterials-based therapeutics are widely used for the treatment of biofilm-associated infections. In this review, the biological characteristics of biofilm are introduced. And the nanomaterials-based antibacterial strategies are further discussed via biofilm targeting, including preventing biofilm formation, enhancing biofilm penetration, disrupting the mature biofilm, and acting as drug delivery systems. In which, the interactions between biofilm and nanomaterials include mechanical disruption, electron transfer, enzymatic degradation, oxidative stress, and hyperthermia. Additionally, the current advances of nanomaterials for antibacterial nanomaterials by biofilm targeting are summarized. This review aims to present a complete vision of antibacterial nanomaterials-biofilm (nano-bio) interactions, paving the way for the future development and clinical translation of effective antibacterial nanomedicines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call