Abstract

Plateau propellants exhibit burning rate curves that do not follow the typical linear relationship between burning rateandpressurewhenplottedonalog–logscale,andbecauseofthisdeviation,theirburningbehaviorisclassifiedas anomalous burning. This paper contains a literature review chronicling the last half-century of research to better understand the mechanisms that govern anomalous burning and to shed light on current research into plateau and related propellants. In addition to the review, a series of experiments investigating the use of nanoscale TiO2-based additivesinammonium-perchloratehydroxyl-terminatedpolybutadienecompositepropellantswasperformed.The baseline propellant consisted of either 70 or 80% monomodal ammonium perchlorate (223 � m) and 30 or 20% binder composed of isophorone-diisocyanate-cured hydroxyl-terminated polybutadiene with Tepanol. Propellants were tested using a strand bomb between 3.45 and 17.24 MPa (34.0–170.1 atm). Analysis of the burning rate data shows that the crystal phase and synthesis method of the TiO2 additive are influential to plateau tailoring and to the apparent effectiveness of the additive in altering the burning rate of the composite propellant. Some of the discrepancy in the literature regarding the effectiveness of TiO2 as a tailoring additive may be due to differences in how the additive was produced. Doping the TiO2 with small amounts of metallic elements (Al, Fe, or Gd) showed additional effects on the burning rate that depend on the doping material and the amount of the dopant. This work providesthe firstpublishedpropellantmixturesandburningrateresultsforcompositepropellantsemployingmetaldoped nanoparticle additives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.