Abstract
Anabolic Androgenic Steroids (AASs) misuse has increased among adolescents and recreational athletes due to their potential effects on muscle hypertrophy. On the other hand, AAS might induce alterations on cardiovascular system, although some controversies regarding AAS on vascular properties remain unknown. To address this question, we aimed to investigate the effects of high doses of nandrolone combined with strenuous resistance training (RT) on function and structure of thoracic aorta. Rats were randomized into four groups: non-trained vehicle (NTV), trained vehicle (TV), non-trained nandrolone (NTN), and trained nandrolone (TN), and submitted to 6 weeks of treatment with nandrolone (5 mg/kg, twice a week) and/or resistance training. In vitro response of thoracic aorta to acetylcholine (ACh) was analyzed. Vascular nitric oxide (NO) and reactive oxygen species (ROS) synthesis were evaluated using 4,5-diaminofluorescein diacetate (DAF-2) and hydroethidine fluorescent techniques, respectively. Thoracic aorta was processed for microscopy analyses and tunica media thickness was measured. ACh-mediated relaxation response was impaired in endothelium intact aortic rings isolated from trained rats (TV and TN) as compared with their matched non-trained groups. TN rats showed reduced ACh-mediated vasodilatation than NTN rats. NO production and bioavailability decreased in thoracic aorta of nandrolone-treated rats in relation to their matched non-trained group (NTN vs. NTV; TN vs. TV). ROS production and tunica media thickness were increased in TN rats when compared with TV rats. These findings indicate that high doses of nandrolone combined with strenuous RT affect NO bioavailability and might induce endothelial dysfunction and arterial morphological alterations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.