Abstract

NASICON-type NaNbV(PO4)3 electrode material synthesized by the Pechini sol-gel technique undergoes a reversible three-electron reaction in a Na-ion cell which corresponds to the Nb5+/Nb4+, Nb4+/Nb3+, and V3+/V2+ redox processes and provides a reversible capacity of 180 mAh·g-1. The sodium insertion/extraction takes place in a narrow potential range at an average potential of 1.55 V versus Na+/Na. Structural characterization by operando and ex situ X-ray diffraction disclosed the reversible evolution of the NaNbV(PO4)3 polyhedron framework during cycling, while XANES measurements in the operando regime confirmed the multielectron transfer upon sodium intercalation/extraction into NaNbV(PO4)3. This electrode material demonstrates extended cycling stability and excellent rate capability maintaining the capacity value of 144 mAh·g-1 at 10 C current rates. It can be regarded as a superior anode material suitable for application in high-power and long-life sodium-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.