Abstract

Previously, the majority of the human genome was thought to be 'junk' DNA with no functional purpose. Over the past decade, the field of RNA research has rapidly expanded, with a concomitant increase in the number of non-protein coding RNA (ncRNA) genes identified in this 'junk'. Many of the encoded ncRNAs have already been shown to be essential for a variety of vital functions, and this wealth of annotated human ncRNAs requires standardised naming in order to aid effective communication. The HUGO Gene Nomenclature Committee (HGNC) is the only organisation authorised to assign standardised nomenclature to human genes. Of the 30,000 approved gene symbols currently listed in the HGNC database (http://www.genenames.org/search), the majority represent protein-coding genes; however, they also include pseudogenes, phenotypic loci and some genomic features. In recent years the list has also increased to include almost 3,000 named human ncRNA genes. HGNC is actively engaging with the RNA research community in order to provide unique symbols and names for each sequence that encodes an ncRNA. Most of the classical small ncRNA genes have now been provided with a unique nomenclature, and work on naming the long (> 200 nucleotides) non-coding RNAs (lncRNAs) is ongoing.

Highlights

  • At the beginning of this century, many geneticists were predicting that the human genome contained around 100,000 protein-coding genes, partly based on the assumption that more complex organisms would have a greater number of genes

  • If we look to the human’s closest living relative, the chimpanzee, we see that the equivalent proteins in human and chimpanzee typically differ by only two amino acids, and approximately 29 per cent of all the orthologous proteins encoded in human and chimpanzee are identical.[1]

  • The ENCyclopedia Of DNA Elements (ENCODE) Consortium,[2] which is aiming to identify all the functional elements in the human genome, suggests that the vast majority of the genome is transcribed as non-protein-coding RNA

Read more

Summary

Introduction

At the beginning of this century, many geneticists were predicting that the human genome contained around 100,000 protein-coding genes, partly based on the assumption that more complex organisms would have a greater number of genes. The ENCyclopedia Of DNA Elements (ENCODE) Consortium,[2] which is aiming to identify all the functional elements in the human genome, suggests that the vast majority of the genome is transcribed as non-protein-coding RNA (ncRNA).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call