Abstract

QCD-like theories possess a positively definite fermion determinant at finite baryon chemical potential ${\ensuremath{\mu}}_{B}$ and the lattice simulation can be successfully performed. While the chiral perturbation theories are sufficient to describe the Bose condensate at low density, to describe the crossover from Bose-Einstein condensation (BEC) to BCS superfluidity at moderate density we should use some fermionic effective model of QCD, such as the Nambu--Jona-Lasinio model. In this paper, using two-color two-flavor QCD as an example, we examine how the Nambu--Jona-Lasinio model describes the weakly interacting Bose condensate at low density and the BEC-BCS crossover at moderate density. Near the quantum phase transition point ${\ensuremath{\mu}}_{B}={m}_{\ensuremath{\pi}}$ (${m}_{\ensuremath{\pi}}$ is the mass of pion/diquark multiplet), the Ginzburg-Landau free energy at the mean-field level can be reduced to the Gross-Pitaevskii free energy describing a weakly repulsive Bose condensate with a diquark-diquark scattering length identical to that predicted by the chiral perturbation theories. The Goldstone mode recovers the Bogoliubov excitation in weakly interacting Bose condensates. The results of in-medium chiral and diquark condensates predicted by chiral perturbation theories are analytically recovered. The BEC-BCS crossover and meson Mott transition at moderate baryon chemical potential as well as the beyond-mean-field corrections are studied. Part of our results can also be applied to real QCD at finite baryon or isospin chemical potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.