Abstract

During active sleep or carbachol-induced motor inhibition, electrical stimulation of the medullary nucleus reticularis gigantocellularis (NRGc) evoked large amplitude, glycinergic inhibitory postsynaptic potentials (IPSPs) in cat motoneurons. The present study was directed to determine whether these IPSPs, that are specific to the state of active sleep, are modulated by opioid peptides. Accordingly, intracellular recordings were obtained from lumbar motoneurons of acute decerebrate cats during carbachol-induced motor inhibition while an opiate receptor antagonist, naloxone, was microiontophoretically released next to the recorded cells. Naloxone reversibly reduced by 26% the mean amplitude of NRGc-evoked IPSPs (1.9±0.2 mV (S.E.M.) vs. 1.4±0.2 mV; n=11, control and naloxone, respectively, p<0.05), but had no effect on the other waveform parameters of these IPSPs (e.g., latency-to-onset, latency-to-peak, duration, etc.). The mean resting membrane potential, input resistance and membrane time constant of motoneurons following naloxone ejection were not statistically different from those of the control. These data indicate that opioid peptides have a modulatory effect on NRGc-evoked IPSPs during carbachol-induced motor inhibition. We therefore suggest that endogenous opioid peptides may act as neuromodulators to regulate inhibitory glycinergic synaptic transmission at motoneurons during active sleep.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.