Abstract

A new solid-phase extraction method was developed for trace determination of Hg(II) by using a small amount of naked magnetite nanoparticles as an adsorbent. The magnetite nanoparticles were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The adsorbed Hg(II)-dithizone complex was eluted with 1.0 mL aliquot of an acidic 1-propanol solution prior to electrothermal atomic absorption spectrometry. A huge positive effect was found on the mercury adsorption by ionic strength. Under optimized condition, a linear calibration curve was obtained for mercury in the range of 0.2–50 ng mL−1 with relative standard deviation in the range of 0.5–2.0%. The limit of detection and enrichment factor were 0.01 ng mL−1 and 98.3, respectively. The effects of coexisting ions were studied extensively, and a new clean-up procedure was used to remove the matrix effects by using a simple sample pretreatment step using a little amount of magnetite nanoparticles. The method was successfully applied to the determination of Hg(II) in different water and human urine samples and a commercial sodium nitrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.