Abstract

Recently, we observed that vaccination of BALB/c mice with thyroid peroxidase (TPO)-DNA in a plasmid is highly effective at inducing antibodies that interact with the immunodominant region recognized by human autoantibodies. We have now analyzed the TPO epitopes recognized by memory T cells in these animals. Splenocytes from TPO-DNA (not control DNA)-vaccinated mice responded to TPO protein antigen, as measured by interferon-gamma production. As a group, TPO-immunized mice recognized 35 of 55 overlapping synthetic peptides that encompass the 814-amino acid TPO ectodomain. In individual mice, between five and 10 peptides induced splenocyte responses. Two T cell epitopes were immunodominant, one of which is also recognized by patients with autoimmune thyroid disease. To explore a potential correlation between T and B cell epitopes, we analyzed serum TPO antibody epitopic fingerprints. No relationship was evident. However, the number of T cell epitopes recognized by individual mice was inversely proportional to recognition of an antibody epitopic subdomain. The diversity of TPO T cell epitopes is in striking contrast to the restricted number of TSH receptor (TSHR) peptides (four of 29) recognized by T cells, as is the paucity of antibodies in the same strain of mice vaccinated with TSHR-DNA. In conclusion, our data highlight differences for both antibody and T cell epitopic recognition in TPO- vs. TSHR-DNA-immunized BALB/c mice. These findings provide insight into mechanisms that may be involved in spontaneous immune responses to two major thyroid autoantigens in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call