Abstract

A pale-yellow bacterial strain, designated S14-144T, was isolated from tundra soil sampled near the Antarctic Peninsula, South Shetland Islands (62° 22' 34″ S, 59° 42' 34″ W). The cells were strictly aerobic, Gram-stain-positive, non-motile and coccoid-shaped. Growth occurred at 4-28 °C, at pH 5.0-9.0 and in the presence of 0-5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S14-144T formed a lineage within the genus Nakamurella and shared the highest 16S rRNA gene sequence similarity with Nakamurella deserti 12Sc4-1T (96.5 %) and Nakamurella silvestrisS20-107T (96.4 %). The average nucleotide identity value between the genomes of strain 14-144T and the type strain of the species, N. deserti, was 72.0 % . The DNA G+C content of strain S14-144T was 61.6 mol% . The major cellular fatty acids of strain S14-144T were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and C16 : 0. The strain contained MK-8(H4) as the predominant respiratory quinone, phosphatidylethanolamine and diphosphatidylglycerol as the major polar lipids, rhamnose, ribose and glucose as the major whole-cell sugars, and meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. On the basis of the phylogenetic, phenotypic and chemotaxonomic analysis, strain S14-144T is considered to represent a novel species of the genus Nakamurella, for which the name Nakamurella antarctica sp. nov. is proposed. The type strain is S14-144T (=CCTCC AB 2015345T=KCTC 39796T).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call