Abstract

Nakagami distribution and related imaging methods are very efficient in diagnostic ultrasonography for visualization and characterization of tissues for years. Abnormalities in tissues are distinguished from surrounding cells by application of the distribution ruled by the Nakagami m-parameter. The potential of discrimination in ultrasonography enables intelligent segmentation of lesions by other diagnostic tools and the imaging technique is very promising in other areas of medicine, like magnetic resonance imaging (MRI) for brain lesion identification, as presented in this paper. Therefore, we propose a novel Nakagami-Fuzzy imaging framework for intelligent and fully automated suspicious region segmentation from axial FLAIR MRI images exhibiting brain tumor characteristics to satisfy ground truth images with different precision levels. The images from MRI data set are processed by applying Nakagami distribution from pre-Rayleigh to post-Rayleigh for adjusting m-parameter. Amorphous and non-homogenous suspicious regions revealed by Nakagami imaging are segmented using customized Fuzzy 2-means to compare with two types of binary ground truths. The framework we propose is an outstanding example of fuzzy-based expert systems providing an average of 92.61% dice score for the main clinical experiment we conducted using the images and two types of ground truths provided by University of Hospital, Hradec Kralove. We also tested our framework by the BraTS 2012 and BraTS 2020 datasets and achieved an average of 91.88% and 89.25% dice scores respectively, which are competitive among the relevant researches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.