Abstract

Na+-K+ passive transport and activity of the Na+ pump were examined in serially passed cultured vascular smooth muscle cells originating from spontaneously hypertensive (SH), Wistar-Kyoto (WKY), and Wistar (W) rats. Measurements included 22Na+ and 86Rb+ (K+ analogue) uptake and washout rate constants as well as intracellular Na+ and K+ levels. The aforementioned variables were studied in cells subjected to either 2 mM Ca2+ or Ca2+-deficient media. In 2 mM Ca2+ medium, SH rat cells demonstrated the highest exchange (uptake and washout) rate constants for Na+ and Rb+ (K+) among cells of the three rat strains. At this extracellular Ca2+ concentration, the Na+ pump activity of SH rat cells was higher than that of WKY rat cells and was not different from that of W rat cells. Incubation in Ca2+-deficient medium resulted in increased magnitudes of Rb+ washout and Na+ uptake rate constants in all cell preparations associated with elevated intracellular Na+ concentrations and augmented activity of the Na+ pump. Under this condition, cells derived from SH rats showed the highest Na+ uptake and Rb+ washout rate constants associated with the highest Na+ pump activity. The increase in intracellular Na+ level in Ca2+-deficient medium was the highest in SH rat cells. These findings show that innate membrane defects and the response of the Na+ pump to these abnormalities can be demonstrated in in vitro-grown vascular smooth muscle cells of the SH rat.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.