Abstract

Optical remote sensing images are a common data sources for surface water monitoring, while they are easily contaminated by clouds, cloud shadows, terrain shadows, etc., resulting in spatial gaps in surface water images. This paper proposes a surface water gap-filling method based on Naive Bayes classification. It uses the historical cloud-free binary (water, non-water) surface water images as prior data and the uncontaminated pixels in the partially contaminated ternary (water, non-water, contaminated pixels) surface water image as evidence to identify the category of gap pixels to achieve the purpose of gap-filling. This method considers the relationship between disconnected water bodies and does not depend on terrain data. When the image is heavily covered by clouds, this method can also reconstruct the complete water extent accurately. Five study areas with different scenarios including rivers, lakes or reservoirs, are selected to evaluate the method. Results show that the average gap-filling accuracy in all five study areas is over 90 %. After gap-filling, the time series of surface water area presents a good correlation with the time series of water level (e.g., the coefficient of determinationR2 = 0.95 in the Dartmouth reservoir). The proposed method is proved effective in filling gaps caused by clouds, cloud shadows and terrain shadows in surface water image, and it would be suitable for high-frequency surface water monitoring and near real-time surface water mapping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.