Abstract

Chronic kidney disease is a disease that can cause death, because the pathophysiological etiology resulting in a progressive decline in renal function, and ends in kidney failure. Chronic Kidney Disease (CKD) has now become a serious problem in the world. Kidney and urinary tract diseases have caused the death of 850,000 people each year. This suggests that the disease was ranked the 12th highest mortality rate. Some studies in the field of health including one with chronic kidney disease have been carried out to detect the disease early, In this study, testing the Naive Bayes algorithm to detect the disease on patients who tested positive for negative CKD and CKD. From the results of the test algorithm accuracy value will be compared against the results of the algorithm accuracy before use and after feature selection using feature selection Featured Correlation Based Selection (CFS), it is known that Naive Bayes algorithm after feature selection that is 93.58%, while the naive Bayes without feature selection the result is 93.54% accuracy. Seeing the value of a second accuracy testing Naive Bayes algorithm without using the feature selection and feature selection, testing both these algorithms including the classification is very good, because the accuracy value above 0.90 to 1.00. Included in the excellent classification. higher accuracy results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.