Abstract

A major limitation of the commonly used clinical MRI contrast agents (CAs) suitable at lower magnetic field strengths (<3.0 T) is their inefficiency at higher fields (>7 T), where next-generation MRI scanners are going. We present dysprosium nanoparticles (β-NaDyF4 NPs) as T2 CAs suitable at ultrahigh fields (9.4 T). These NPs effectively enhance T2 contrast at 9.4 T, which is 10-fold higher than the clinically used T2 CA (Resovist). Evaluation of the relaxivities at 3 and 9.4 T show that the T2 contrast enhances with an increase in NP size and field strength. Specifically, the transverse relaxivity (r2) values at 9.4 T were ∼64 times higher per NP (20.3 nm) and ∼6 times higher per Dy(3+) ion compared to that at 3 T, which is attributed to the Curie spin relaxation mechanism. These results and confirming phantom MR images demonstrate their effectiveness as T2 CAs in ultrahigh field MRIs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call