Abstract

Flaveria bidentis, a C4 dicot, was transformed with sorghum (a monocot) cDNA clones encoding NADP-malate dehydrogenase (NADP-MDH; EC 1.1.1.82) driven by the cauliflower mosaic virus 35S promoter. Although these constructs were designed for over-expression, many transformants contained between 5 and 50% of normal NADP-MDH activity, presumably by cosense suppression of the native gene. The activities of a range of other photosynthetic enzymes were unaffected. Rates of photosynthesis in plants with less than about 10% of normal activity were reduced at high light and at high [CO2], but were unaffected at low light or at [CO2] below about 150 [mu]L L-1. The large decrease in maximum activity of NADP-MDH was accompanied by an increase in the activation state of the enzyme. However, the activation state was unaffected in plants with 50% of normal activity. Metabolic flux control analysis of plants with a range of activities demonstrates that this enzyme is not important in regulating the steady-state flux through C4 photosynthesis in F. bidentis. Cosense suppression of gene expression was similarly effective in both the mesophyll and bundle-sheath cells. Photosynthesis of plants with very low activity of NADP-MDH in the bundle-sheath cells was only slightly inhibited, suggesting that the presence of the enzyme in this compartment is not essential for supporting maximum rates of photosynthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call