Abstract
Autophagy has been implicated as a cellular protein degradation process that is used to recycle cytoplasmic components under biotic and abiotic stresses and so restrict programmed cell death (PCD). In this study, we report a novel regulatory mechanism by which NADPH oxidase respiratory burst oxidase homolog D (RBOHD) regulated pathogen-induced autophagy and hypersensitive (HR) cell death. We found that the Pseudomonas syringae pv tomato bacteria DC3000 expressing avrRps4 (Pst-avrRps4) induction of RBOHD-dependent reactive oxygen species (ROS) production promoted the onset of autophagy, whereas a pretreatment with an NADPH oxidase RBOHD inhibitor reversed this trend. The inhibitor significantly blocked pathogen-induced autophagosome formation and ROS increase. Moreover, we also show that in the wild-type and atrbohF mutant, Pst-avrRps4-induced cell death was limited, whereas in the case of the atrbohD mutant, the infection triggered a spreading-type necrosis. Our results demonstrate that the RBOHD-dependent ROS accumulation stimulated autophagosome formation and limited HR cell death.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.