Abstract

The aim of the study is to examine the relationship between oxidative bursts, their regulation with ion homeostasis, and NADPH oxidase (NOX) in different salt-sensitive maize genotypes. For this, in the first study, four differently salt-sensitive maize genotypes (BIL214 × BIL218 as tolerant, BHM-5 as sensitive, and BHM-7 and BHM-9 as moderate-tolerant) were selected on the basis of phenotype, histochemical detection of reactive oxygen species (ROS), malondialdehyde (MDA) content, and specific and in-gel activity of NOX. In the next experiment, these genotypes were further examined in 200 mM NaCl solution in half-strength Hoagland media for nine days to study salt-induced changes in NOX activity, ROS accumulation, ion and redox homeostasis, the activity of antioxidants and their isozyme responses, and to find out potential relationships among the traits. Methylglyoxal (MG) and glyoxalse enzymes (Gly I and II) were also evaluated. Fully expanded leaf samplings were collected at 0 (control), 3, 6, 9-day, and after 7 days of recovery to assay different parameters. Na+/K+, NOX, ROS, and MDA contents increased significantly with the progression of stress duration in all maize genotypes, with a significantly higher value in BHM-5 as compared to tolerant and moderate-tolerant genotypes. A continual induction of Cu/Zn-SOD was observed in BIL214 × BIL218 due to salt stress. Substantial decreases in CAT2 and CAT3 isozymes in BHM-5 might be critical for the highest H2O2 burst in that sensitive genotype under salt stress. The highest intensified POD isozymes were visualized in BHM-5, BHM-7, and BHM-9, whereas BIL214 × BIL218 showed a continual induction of POD isozymes, although GPX activity decreased in all the genotypes at 9 days. Under salt stress, the tolerant genotype BIL214 × BIL218 showed superior ASA- and GSH-redox homeostasis by keeping GR and MDHAR activity high. This genotype also had a stronger MG detoxification system by having higher glyoxalase activity. Correlation, comparative heatmap, and PCA analyses revealed positive correlations among Na+/K+, NOX, O2•−, H2O2, MG, proline, GR, GST, and Gly I activities. Importantly, the relationship depends on the salt sensitivity of the genotypes. The reduced CAT activity as well as redox homeostasis were critical to the survival of the sensitive genotype.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call