Abstract

NADPH oxidases (NOXs) have been described as critical players in vascular remodeling, a mechanism modulated by matrix metalloproteinases. In this study, we describe for the first time the upregulation of MMP-10 through the activation of NOX5 in endothelial cells. In a chronic NOX5 overexpression model in human endothelial cells, MMP-10 production was measured at different levels: extracellular secretion, gene expression (mRNA and protein levels), and promoter activity. Effects on cell migration were quantified using wound healing assays. NOX5 overexpression increased MMP-10 production, favoring cell migration. In fact, NOX5 and MMP-10 silencing prevented this promigratory effect. We showed that NOX5-mediated MMP-10 upregulation involves the redox-sensitive JNK/AP-1 signaling pathway. All these NOX5-dependent effects were enhanced by angiotensin II (Ang II). Interestingly, MMP-10 protein levels were found to be increased in the hearts of NOX5-expressing mice. In conclusion, we described that NOX5-generated ROS may modulate the MMP-10 expression in endothelial cells, which leads to endothelial cell migration and may play a key role in vascular remodeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.