Abstract

We measured the kinetics of light-induced NADPH formation and subsequent dark consumption by monitoring in vivo its fluorescence in the cyanobacterium Synechocystis PCC 6803. Spectral data allowed the signal changes to be attributed to NAD(P)H and signal linearity vs the chlorophyll concentration was shown to be recoverable after appropriate correction. Parameters associated to reduction of NADP+ to NADPH by ferredoxin–NADP+-oxidoreductase were determined: After single excitation of photosystem I, half of the signal rise is observed in 8ms; Evidence for a kinetic limitation which is attributed to an enzyme bottleneck is provided; After two closely separated saturating flashes eliciting two photosystem I turnovers in less than 2ms, more than 50% of the cytoplasmic photoreductants (reduced ferredoxin and photosystem I acceptors) are diverted from NADPH formation by competing processes. Signal quantitation in absolute NADPH concentrations was performed by adding exogenous NADPH to the cell suspensions and by estimating the enhancement factor of in vivo fluorescence (between 2 and 4). The size of the visible (light-dependent) NADP (NADP++NADPH) pool was measured to be between 1.4 and 4 times the photosystem I concentration. A quantitative discrepancy is found between net oxygen evolution and NADPH consumption by the light-activated Calvin–Benson cycle. The present study shows that NADPH fluorescence is an efficient probe for studying in vivo the energetic metabolism of cyanobacteria which can be used for assessing multiple phenomena occurring over different time scales.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call