Abstract
NADPH-diaphorase (NADPH-d) is a histochemical marker for nitric oxide synthase (NOS) and is widely used to identify nitric oxide (NO) producing cells in the central nervous system (CNS) of both vertebrates and invertebrates. NADPH-d histochemistry was used to quantitatively characterize putative NO-producing neurons in the CNS of the Gray mussel Crenomytilus grayanus subjected to two kinds of stress, environmental pollution and hypoxia, the latter caused by the mollusk transportation in a small volume of water. Mussels were sampled from one relatively clean (reference) and four polluted sites in Amursky and Ussuriysky Bays (Peter the Great Bay, Sea of Japan) in August, 2003. The number of NADPH-d-positive neurons was estimated and enzyme activity was determined from the optical density of the formazan precipitate in the CNS ganglia at 0, 3, and 72 h after sampling. Just after sampling, NADPH-d-positive neurons were found in the cerebropleural, visceral, and pedal ganglia. The number and staining intensity of NADPH-d-positive neurons were significantly higher in the pedal ganglia than the other two ganglia. There were significant differences in the number of NADPH-d-positive neurons and enzyme activity between the mussels from the reference and heavily polluted stations. The proportion and staining intensity of NADPH-d-positive neurons were maximum in the pedal ganglia of the mussels from the heavily polluted station in Amursky Bay. Transportation of mussels in a limited volume of water for 3 h resulted in a significant increase in the proportion and staining intensity of NADPH-d-positive neurons in all ganglia. In mollusks from all stations kept in aerated aquaria for 72 h, both the proportion and staining intensity of NADPH-d-positive neurons did not differ significantly from the initial level. However, the differences in the proportion and staining intensity of NADPH-d-positive neurons between the reference and heavily polluted stations were significant. The present results suggest that NO is involved in mollusk nerve cell adaptation to environmental changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.