Abstract

The activity and distribution of nicotinamide dinucleotide phosphate diaphorase (NADPH-d), an enzyme that is widely distributed in the central nervous system and involved in the production of the free radical nitric oxide, were investigated histochemically in the normal developing and intracranially transplanted retinas. In the normal rat retina, NADPH-d activity was first detected in cells in the ganglion cells layer (GCL) and blood vessels on the first postnatal day (P0). A small but distinct population of NADPH-d positive cells were observed along the inner border of the inner nuclear layer at P7. NADPH-d positive sublaminae began to appear in the inner plexiform layer during the second postnatal week, and several strongly reactive sublaminae resembling those observed in the adult were observed by the fourth postnatal week. The overall spatio- temporal sequence of development of NADPH-d positive cells in the transplanted retina was similar to that of the normal retina, except a lack of reactive in the inner plexiform layer in more mature transplants as compared with normal retinas of corresponding ages. These results indicate that the time course of development and distribution of NADPH-d cells in early postnatal retina requires signals mainly of intraretinal origin and is independent of influence from the surroundings. While this finding is supportive to the notion that neurons that are rich in NADPH-d are resistant to injury or perturbation, the observation of a lack of well organized NADPH-d reactive sublaminae in the inner plexiform layer in older transplants suggests a possible alteration in the synaptic circuitry in the inner retina with increasing postgrafting survival time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.