Abstract

In cerebellum of the adult rat, glucose-6-phosphate dehydrogenase (G6PD) activity is particularly localized in Purkinje cells, showing lower activity in the molecular and granule cell layers. G6PD is the first and rate-limiting step of the hexose monophosphate shunt (HMS), which has the physiological role of providing NADPH for reductive biosynthesis and detoxifying reactions. In this study, we searched for a possible correlation between G6PD and other NADPH-consuming enzymes, such as NADPH-cytochrome P450 reductase (P450R), glutathione reductase (GR) and NADPH-diaphorase (NADPH-d). This study was performed by means of immunohistochemistry and enzyme histochemistry followed by quantitative densitometric and confocal laser scanning microscopic analyses. Our results demonstrated that G6PD, P450R and GR have a similar distribution pattern characterized by the highest concentration of these enzymes in the somata of Purkinje cells, and by lower concentrations in the molecular and the granule cell layers. Moreover, in Purkinje cells, G6PD colocalized with both P450R and GR. NADPH-d activity showed a different distribution pattern when compared to the other enzymes, revealing the highest activity in the molecular layer and the lowest in Purkinje cells. Our results suggest a coordinated regulative mechanism of G6PD, P450R and GR based on the request of NADPH or on specific transcription factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.