Abstract

The chloroplastic NADP-dependent malate-dehydrogenase (EC 1.1.1.82) activity is modulated by light and dark. The enzyme is activated upon illumination of intact or broken chloroplasts or by incubation with dithiothreitol, whereas dark has the opposite effect. The present communication shows an additional regulation of the light modulation: in isolated intact pea chloroplasts, light activation was inhibited in the presence of electron acceptors such as sodium bicarbonate, 3-phosphoglycerate or oxaloacetate, which consume NADPH2 and produce NADP. With broken chloroplasts, addition of NADP resulted in a pronounced lag phase of NADP-dependent malate dehydrogenase light activation, while NADPH2 was without any effect. The extent of the lag phase was correlated to the amount of NADP added. When light was replaced by dithiotreitol, the inhibition effect was even more pronounced. It was assumed that NADP inhibits the modulation reaction directly: reduced thioredoxin, a potent mediator of activation by light, or dithiotreitol appear to counteract NADP in a competitive manner. The results indicate a physiological role of NADP in the regulation of chloroplastic NADP-dependent malate dehydrogenase which is capable of removing electrons from the chloroplast, via oxaloacetate reduction and malate export. Thus an NADP concentration sufficient for continuous photosynthetic electron flow may be achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call