Abstract

Sweet sorghum is a C4 crop that shows high salt tolerance and high yield. NADP-malate dehydrogenase ( NADP-ME) is a crucial enzyme of the C4 pathway. The regulatory mechanism of NADP-ME remains unclear. In this study, we isolated SbNADP-ME from sweet sorghum. The open reading frame of SbNADP-ME is 1911 bp and 637 amino acid residues. Quantitative real-time PCR analysis showed that SbNADP-ME transcription in sweet sorghum was enhanced by salt stress. The SbNADP-ME transcript level was highest under exposure to 150 mM NaCl. Arabidopsis overexpressing SbNADP-ME showed increased germination rate and root length under NaCl treatments. At the seedling stage, physiological photosynthesis parameters, chlorophyll content, PSII photochemical efficiency, and PSI oxidoreductive activity in the wild type decreased more severely than in the overexpression lines but less than in T-DNA insertion mutants under salt stress. Overexpression of SbNADP-ME in Arabidopsis may also increase osmotic adjustment and scavenging activity on DPPH and decrease membrane peroxidation. These results suggest that SbNADP-ME overexpression in Arabidopsis increases salt tolerance and alleviates PSII and PSI photoinhibition under salt stress by improving photosynthetic capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call