Abstract

Abstract A statistical method to correct for the limb effect in off-nadir Atmospheric Infrared Sounder (AIRS) channel radiances is described, using the channel radiance itself and principal components (PCs) of the other channel radiances to account for the multicollinearity. A method of selecting an optimal set of predictors is proposed and demonstrated for one- and two-PC predictors. Validation results with a subset of AIRS channels in the spectral region 649–2664 cm−1 show that the mean nadir-corrected brightness temperature (BT) is largely independent of scan angle. More than 66% of the channels have a root-mean-square (rms) bias less than 0.10 K after nadir correction. Limb effect on the standard deviation (SD) of BT is discernible at larger scan angles, mainly for the atmospheric windows and the water vapor channels around 6.7 μm. After nadir correction, nearly all atmospheric window channels unaffected by solar glint and more than 76% of water vapor channels examined have BT SDs brought closer to nadir values. For the window channels affected by solar glint (wavenumber > 2490 cm−1), BT SDs at the scan angles with the strongest impact from solar reflection were improved on average by more than 0.6 K after nadir correction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.