Abstract

The regulation of endothelial function plays an important role in the development and progression of metabolic and cardiovascular diseases. A critical determinant of endothelial function is the balance between nitric oxide and reactive oxygen species. Endothelium-derived NO availability can be limited by enhanced formation of reactive oxygen species. Major sources of reactive oxygen species in the vessel wall are NAD(P)H oxidase complexes. This review summarizes the impact of vascular NAD(P)H oxidase-derived reactive oxygen species on atherosclerosis and endothelial dysfunction. Changes in NAD(P)H oxidase expression and activity have clinical implications. Mutations in NAD(P)H oxidase subunits can lead to impaired oxidative burst in leukocytes and chronic granulomatous disease. In contrast, normalization of increased expression and activity of NAD(P)H oxidase in endothelial dysfunction and vascular disorders can be considered as a novel therapeutic strategy in the treatment of cardiovascular diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.