Abstract

Strong β-adrenergic stimulation induced spontaneous diastolic Ca(2+) transients (SCTs) in electrically paced murine cardiac myocytes [28]. To obtain further insights into the underlying mechanism, we developed a method for a simultaneous analysis, in which the free luminal Ca(2+) concentration in the sarcoplasmic reticulum (SR) ([Ca(2+)]SR) and the free cytosolic Ca(2+) concentration ([Ca(2+)]i) were measured in parallel in the same cell. Each spontaneous diastolic Ca(2+) transient was exactly mirrored by a decrease of [Ca(2+)]SR. Since antagonism of the Ca(2+) mobilizing second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) was shown to block SCTs in single cardiac myocytes [28], we analyzed the effect of the novel ADP-ribosyl cyclase inhibitor SAN4825 on both cytosolic and intra-luminal Ca(2+) transients upon strong β-adrenergic stimulation. A strong antagonist effect of SAN4825 on SCTs at low micromolar concentrations was observed. Our results suggest that the underlying mechanism of spontaneous diastolic Ca(2+) transients observed upon strong β-adrenergic stimulation is sensitization of type 2 ryanodine receptor by the Ca(2+) releasing activity of the products of ADP-ribosyl cyclase activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call