Abstract

Background/aims-Since the discovery of NAD-dependent deacetylases, Sirtuins, it has been recognized that maintaining intracellular levels of NAD is crucial for the management of stress-response of cells. Here we show that high glucose(HG)-induced mesangial hypertrophy is associated with loss of intracellular levels of NAD. This study was designed to investigate the effect of NAD on HG-induced mesangial hypertrophy. Methods-The rat glomerular mesangial cells (MCs) were incubated in HG medium with or without NAD. Afterwards, NAD<sup>+</sup>/NADH ratio and enzyme activity of Sirtuins was determined. In addition, the expression analyses of AMPK-mTOR signaling were evaluated by Western blot analysis. Results-We showed that HG induced the NAD<sup>+</sup>/NADH ratio and the levels of SIRT1 and SIRT3 activity decreased as well as mesangial hypertrophy, but NAD was capable of maintaining intracellular NAD<sup>+</sup>/NADH ratio and levels of SIRT1 and SIRT3 activity as well as of blocking the HG-induced mesangial hypertrophy in vitro. Activating Sirtuins by NAD blocked the activation of pro-hypertrophic Akt signaling, and augmented the activity of the antihypertrophic AMPK signaling in MCs, which prevented the subsequent induction of mTOR-mediated protein synthesis. By AMPK knockdown, we showed it upregulated phosphorylation of mTOR. In such, the NAD inhibited HG-induced mesangial hypertrophy whereas NAD lost its inhibitory effect in the presence of AMPK siRNA. Conclusion-These results reveal a novel role of NAD as an inhibitor of mesangial hypertrophic signaling, and suggest that prevention of NAD depletion may be critical in the treatment of mesangial hypertrophy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.