Abstract

Oxidative stress and decreased DNA damage repair in vertebrates increase with age also due to lowered cellular NAD+. NAD+ depletion may play a major role in the aging process at the cellular level by limiting (1) energy production, (2) DNA repair, and (3) genomic signaling. In this study, we hypothesize that it is not NAD+ as a cofactor in redox reactions and coenzyme in metabolic processes that has the ultimate role in aging, but rather the role of NAD+ in cellular signaling when used as substrate for sirtuins (SIRT1-7 in mammals) and PARPs [Poly(ADP-ribose) polymerases]. Both sirtuins and PARPs influence many transcription factors and can affect gene expression. As a signaling molecule, NAD+ is consumed in the reaction donating ADP-ribose and releasing nicotinamide (NAM) as a by-product. It seems that aging at the cellular level is associated with a decline of NAD+ and that NAD+ restoration can reverse phenotypes of aging by inducing cellular repair and stress resistance. Adequate intracellular NAD+ concentrations may be an important longevity assurance factor, while lowered cellular NAD+ concentration may negatively influence the life span.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.