Abstract

Mouse fibroblasts in which the mthfd2 gene encoding mitochondrial NAD-dependent methylenetetrahydrofolate dehydrogenase–cyclohydrolase (NMDMC) was previously inactivated were infected with retroviral expression constructs of dehydrogenase/cyclohydrolase cDNA. Cellular fractionation confirmed that the expressed proteins were properly targeted to the mitochondria. Expression of the NAD-dependent methylenetetrahydrofolate dehydrogenase–cyclohydrolase enzyme in mitochondria corrected the glycine auxotrophy of the null mutant cells. A construct in which the cyclohydrolase activity of NMDMC was inactivated by point mutation also rescued the glycine auxotrophy, although poorly. This suggests that the cyclohydrolase activity is also required to ensure optimal production of 10-formyltetrahydrofolate. The expression of the NADP-dependent methylenetetrahydrofolate dehydrogenase–cyclohydrolase-synthetase in the mitochondria also reversed the glycine requirement of the null cells demonstrating that the use of the NAD cofactor is not absolutely essential to maintain the flux of one-carbon metabolites. All rescued cells demonstrated a decrease in the ratio of incorporation of exogenous formate to serine in standardized radiolabeling studies. This ratio, which is approximately 2.5 for nmdmc (−/−) cells and 0.3 for the wild type cells under the conditions used, is a qualitative indicator of the ability of the mitochondria of the cells to generate formate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.