Abstract

Exploring an efficient acclimation strategy to obtain robust bioanodes is of practical significance for antibiotic wastewater treatment by bioelectrochemical systems (BESs). This study investigated the effects of two acclimation conditions on chloramphenicol (CAP)-degrading anode biofilm formation in microbial fuel cells (MFCs). The one was continuously added the extracellular polymeric substances (EPS) extracted from anaerobic sludge and increasing concentrations of CAP after the first start-up phase, while the other was added the EPS-1 (N-acyl-homoserine lactones, namely AHLs were extracted from the EPS) at the same conditions. The results demonstrated that AHLs in the sludge EPS played a crucial role for enhanced CAP-degrading anode biofilm formation in MFCs. The AHL-regulation could not only maintain stable voltage outputs but also significantly accelerate CAP removal in the EPS MFC. The maximum voltage of 653.83 mV and CAP removal rate of 1.21 ± 0.05 mg/L·h were attained from the EPS MFC at 30 mg/L of CAP, which were 0.84 and 1.57 times higher than those from the EPS-1 MFC, respectively. These improvements were largely caused by the thick and 3D structured biofilm, strong and homogeneous cell viability throughout the biofilm, and high protein/polysaccharide ratio along with more conductive contents in the biofilm EPS. Additionally, AHLs facilitated the formation of a biofilm with rich biodiversity and balanced bacterial proportions, leading to more beneficial mutualism among different functional bacteria. More bi-functional bacteria (for electricity generation and antibiotic resistance/degradation) were specifically enriched by AHLs as well. These findings provide quorum sensing theoretical knowledge and practical instruction for rapid antibiotic-degrading electrode biofilm acclimation in BESs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call