Abstract

The remarkable mechanical performance of biological materials such as bone, nacre, and spider silk stems from their staggered microstructure in which stiff and strong reinforcements are elongated in the direction of loading, separated by softer interfaces, and shifted relative to each other. This structure results in useful combinations of modulus, strength and toughness and therefore is increasingly mimicked in bio-inspired engineering composites. Here, we report the use of a simple and versatile technique based on doctor-blading to fabricate staggered composites of microscopic alumina tablets with high alignment in a chitosan matrix. Tensile tests on these nacre-like materials show that the modulus and strength of the composite films are enhanced by the incorporation of ceramic tablets, but only up to 15vol% after which all properties degrade. This phenomenon, also reported in the past for most of nacre-like materials, composed of micro/nano tablets, obtained from different techniques, has been limiting our ability to produce large volumes of high-performance nacre-like materials. Examination of the structure of the films revealed that at lower tablet concentrations the tablets are well-aligned and well dispersed thorough the volume of the film. At 15vol% and beyond, we observed tablet misalignment and clustering. In order to investigate the impact of these imperfections on material performance we developed large scale finite element models representative of the structure of the composite films. These models show that the mechanical performance significantly degrades with tablet misalignment, and especially at high tablet concentrations. The simulations along with the SEM images therefore quantitatively explain the experimental trends, e.g. the degradation of mechanical properties at high tablet contents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.