Abstract
Based on the large number of crustal seismic experiments carried out in the last decades we create NACr14, a 3D crustal model of the North American continent at a resolution of 1°×1°. We present maps of thickness and average velocities of the main layers that comprise the North American crystalline crust, obtained from the most recent seismic crustal models within the USGS crustal structure database. However, the crustal data are unevenly distributed and in some cases discrepancies exist between published models. In order to construct a consistent 3D crustal model with three layers in the crystalline crust, we refrained from a direct interpolation of the crustal seismic parameters in the database. Instead, we implemented the following sequence of steps: 1. Definition of the geometry of the main tectonic provinces of North America; 2. Selection and evaluation of the reliability of seismic crustal models in the database; 3. Estimation of the P-wave seismic velocity and thickness of the upper, middle and lower crust for each tectonic province; 4. Estimation of the interpolated Pn velocity distribution. The resulting average velocity of the crystalline crust is mostly consistent with that of the seismic points. The main variations of the structure of the crystalline crust of North America displayed in the model can be related to its tectonic evolution. The model, available in a digital form, can be used in various geophysical applications, such as the correction for the crustal effects in gravity and seismic tomography and models of dynamic topography, in order to detect heterogeneities characterizing the underlying upper mantle.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.