Abstract

Salt interference significantly affects the behavior of heavy metals in the environment. This study compared and analyzed the response process, migration, and transformation of cadmium (Cd) in the hyperaccumulator Solanum nigrum (S. nigrum) under different NaCl levels to reveal the interference mechanisms of salt in plant remediation of Cd-contaminated soil. The results showed that Cd and salt stress significantly inhibited the growth of plants. The stress effect had more potent growth inhibition at the root than aboveground, thus inducing changes in the spatial configuration of the plants (decreased root-to-aboveground biomass ratio). Salt could activate Cd in plants, enhancing the inhibitory effect on plant growth. Salt increased Cd bioavailability due to the rhizosphere acidification effect, increasing plants’ Cd accumulation. The Cd bioconcentration factor in plant roots peaked during the high Cd-high salt treatment (117.10), but the Cd accumulation of plants peaked during the high Cd-low salt treatment (233.04 μg plant−1). Salt additions and increased Cd concentrations enhanced root compartmentalization, inhibiting Cd transport to the aboveground. Changes in Fourier-transform infrared spectroscopy (FTIR) measurements confirmed that the functional groups in plants provided binding sites for Cd. These findings can help guide the phytoremediation of Cd contamination under saline soil conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call