Abstract
Lymphocyte apoptosis has been observed after strenuous exercise. Both glucocorticoids (GC) and reactive oxygen species (ROS) have been suggested to contribute to exercise-induced lymphocyte apoptosis. The aims of this study were to 1) examine the direct contribution of GC during exercise-induced intestinal lymphocyte (IL) apoptosis and 2) determine the contribution of oxidative stress, in the absence of GC, to exercise-induced IL apoptosis. Mice were bilaterally adrenalectomized (ADX) and randomly assigned to receive saline (SAL) or N-acetyl-l-cysteine (NAC) 30 min before treadmill exercise (EX). EX consisted of 90 min of continuous running at a 2 degrees slope (30 min at 22 m/min, 30 min at 25 m/min; and 30 min at 28 m/min), and then killed immediately (Imm) or 24 h (24 h) postexercise. Control mice were exposed to a nonexercised (NonEX) condition consisting of treadmill noise and vibration without running. ILs were isolated and measured for apoptotic (phosphatidylserine externalization, mitochondrial membrane depolarization, Bcl-2, caspase 3, and cytosolic cytochrome c) and oxidative stress (H(2)O(2) and glutathione) markers. Plasma was analyzed for corticosterone (CORT) by radioimmunoassay. ADX eliminated the exercise-induced elevation in CORT but did not prevent IL apoptosis and cell loss relative to NonEX mice. In contrast, administration of NAC to ADX mice protected ILs from apoptotic cell death and inhibited post-exercise cell loss. These findings suggest that GC are not responsible for exercise-induced apoptosis and cell loss of ILs. The protective effect provided by the antioxidant NAC strongly suggest that oxidative stress is the primary pathway for IL apoptosis and cell loss after strenuous exercise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.