Abstract

Methoxychlor (MXC), an organo-chlorine insecticide, is a reproductive toxicant in females, causing apoptosis-mediated follicular atresia. To elucidate the potentials of Methoxychlor as a geno-toxicant, granulosa cells of healthy antral follicles, exposed to MXC and antioxidant, N-acetyl-l-cysteine, were studied by the terminal deoxynucleotidyltransferase-dUTP nick end-labelling and single-cell gel electrophoresis (comet) assays.MXC caused DNA fragmentation, as revealed by the increased incidence of dark brown condensed TUNEL positive cells in contrast with lightly brown TUNEL negative cells with maximum TUNEL positive cells were observed in 100 μg/mL MXC treated groups. Quantitatively, maximum geno-toxicity was exhibited at highest MXC treatment with percent tail DNA as 17.87 ± 0.85, 41.16 ± 3.94, and 47.73 ± 3.71 in comparison with control (0.65 ± 0.03, 2.91 ± 0.27, and 7.16 ± 1.39) after 24, 48 and 72 h exposure duration, respectively. MXC treated groups exhibited Type 1-Type 3 comets as compared to Type 0 comets in control groups. Supplementation of NAC led to significant (p < 0.05) decline in geno-toxicity in MXC treated groups with maximum amelioration observed at 5 and 10 mM.Consequently, increased DNA damage attributed to the granulosa cells apoptosis in response to Methoxychlor exposure was significantly combated by NAC supplementation, preventing the geno-toxicity induced cyto-toxicity in GCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call