Abstract

The monosaccharide N-acetylglucosamine (GlcNAc) is a major component of microbial cell walls and is ubiquitous in the environment. GlcNAc stimulates developmental pathways in the fungal pathogen Candida albicans, which is a commensal organism that colonizes the mammalian gut and causes disease in the setting of host immunodeficiency. Here we investigate GlcNAc signaling in thermally dimorphic human fungal pathogens, a group of fungi that are highly evolutionarily diverged from C. albicans and cause disease even in healthy individuals. These soil organisms grow as polarized, multicellular hyphal filaments that transition into a unicellular, pathogenic yeast form when inhaled by a human host. Temperature is the primary environmental cue that promotes reversible cellular differentiation into either yeast or filaments; however, a shift to a lower temperature in vitro induces filamentous growth in an inefficient and asynchronous manner. We found GlcNAc to be a potent and specific inducer of the yeast-to-filament transition in two thermally dimorphic fungi, Histoplasma capsulatum and Blastomyces dermatitidis. In addition to increasing the rate of filamentous growth, micromolar concentrations of GlcNAc induced a robust morphological transition of H. capsulatum after temperature shift that was independent of GlcNAc catabolism, indicating that fungal cells sense GlcNAc to promote filamentation. Whole-genome expression profiling to identify candidate genes involved in establishing the filamentous growth program uncovered two genes encoding GlcNAc transporters, NGT1 and NGT2, that were necessary for H. capsulatum cells to robustly filament in response to GlcNAc. Unexpectedly, NGT1 and NGT2 were important for efficient H. capsulatum yeast-to-filament conversion in standard glucose medium, suggesting that Ngt1 and Ngt2 monitor endogenous levels of GlcNAc to control multicellular filamentous growth in response to temperature. Overall, our work indicates that GlcNAc functions as a highly conserved cue of morphogenesis in fungi, which further enhances the significance of this ubiquitous sugar in cellular signaling in eukaryotes.

Highlights

  • Cellular differentiation is an essential process for the development and growth of complex multicellular eukaryotic organisms

  • We discovered that N-acetylglucosamine (GlcNAc), a ubiquitous carbohydrate with cellular roles across all kingdoms of life, stimulated a switch to the environmental form for two thermally dimorphic fungal pathogens, Histoplasma capsulatum and Blastomyces dermatitidis

  • Analysis of how fungal cells respond to GlcNAc revealed that these fungi possess two GlcNAc transporters that are important for controlling their ability to switch between infectious and parasitic states

Read more

Summary

Introduction

Cellular differentiation is an essential process for the development and growth of complex multicellular eukaryotic organisms. Many unicellular eukaryotic organisms undergo a program of cellular differentiation to produce a new cell type that is specialized for survival in a distinct environmental niche. In response to environmental stimuli, the family of thermally dimorphic fungal pathogens undergoes a program of cellular differentiation to transition between a saprophytic soil form and a parasitic host form [1]. The parasitic form for the majority of thermally dimorphic fungi consists of a unicellular yeast form that is capable of evading host immune defenses. Temperature is the predominant environmental cue that promotes cellular differentiation of thermally dimorphic fungi; additional factors including CO2, reactive oxygen species, and steroid hormones are thought to influence morphogenesis [2,3,4,5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call